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A b s t r a c t  

A demonstration, using the variational calculus, is given showing that it is 
impossible to describe the excess free energy in any liquid surface by the use of 
a single energy parameter, the surface tension, without violating the laws of motion. 
The addition of the required second parameter, the flexural rigidity, is shown to be 
adequate to explain published data on the system n-hexadecane/glycerol, and to 
demonstrate that for small radii of curvature, the curvature parameter may contri- 
bute orders of magnitude more to the surface energy than the surface tension does. 

1. I n t r o d u c t i o n  

This paper has several purposes. It will show that the variational calculus 
furnishes a very powerful tool for the examination of  experimental models, and it will 
use the free surface energy model as an example by analysing the rotating drop experi- 
ment. It will show that it is impossible to represent the free energy in a surface by the 
surface tension alone without violating the laws of  motion. It will show how, in the 
rotating drop experiment, the mathematical analysis suggests alternative and more 
satisfactory models for the surface energy. It is hoped that the mathematical strategy 
outlined will suggest other scientific models to which the variational calculus might 
contribute in a similar fashion. 

When a system, such as the rotating drop, is in a steady-state condition, certain 
integrals describing the state must be minimized. The determination of  the minimal 
boundary conditions and functional forms can be done using the methods of  the 
variational calculus. Such a determination is not too difficult an extrapolation of  the 
methods for finding the maximum and minimum points of  simple curves in elementary 
calculus. The methods, although extremely powerful, are not familiar to most chemists; 
it is therefore important that their strengths be demonstrated. Surface chemistry is 
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a very important example, for if an entity can be isolated, it must have a surface and 
any reaction between two entities involves their surfaces. So the surface model must 
be examined to see if the area parameter is enough to describe a surface, as all the 
important surfaces are highly curved. 

If it can be shown in the minimization process that too few measurable para- 
meters lead to a reduction to absurdity, the model must be changed to include at 
least one additional parameter; however, in order to conform to the requirements 
of Occam's razor, the model should not have more parameters than are necessary to 
avoid the reduction to absurdity. 

2. T h e  ro t a t i ng  drop 

A method for obtaining interfacial free energies by measuring the shape of a 
drop of fluid in a more dense liquid contained in a rotating horizontal tube was first 
suggested by Plateau's [1] experiments. Beer [2] had also considered the shape of 
the drop in some detail, as did Lord Raleigh [3] in 1914. It was not until 1942, 
however, that Vonnegut [4] first tried to use the method to determine surface tension. 

Vonnegut's analysis rested on the assumption that the drop could be treated 
as though it were a cylinder with hemispherical ends, thus avoiding having to deter- 
mine the drop shape. The measurement of drop length 2Xo is relatively easy, but 
the measurement of the drop radius y = f(x) is very difficult experimentally and 
therefore requires theoretical analysis. Further contributions have been made by 
Silberberg [5], Rosenthal [6], Ross [7], Wade et al. [8] and Princen, Zia and Mason 
[9]. All of the workers cited made the tacit assumption that the deformation of the 
drop shape began at zero rate of rotation, an assumption that will be examined in this 
paper. The beautifully precise experimental work of Prinzen, Zia and Mason (PZM) 
will test the mathematical development. Figure 1, from PZM, illustrates the experi- 
mental method. 

The rotating drop method is admirably suited to our purpose, for only one 
surface, that between the two phases, is involved so there are no contact angles. In 
addition, there is no relative motion, in the absence of gravity, of the phases when a 
steady-state is achieved. More importantly, the initial statement of the problem can 
be made using only the most basic concepts, so that the introduction of tacit assump- 
tions, such as unnatural boundary conditions, is fairly easily avoided. For example, 
the assumption that the volume of the drop and of the surrounding phases are con- 
stants restricts all the possible potential energy parameters to the interface between 
the two phases and requires the pressures, both inside and outside the drop, on the 
axis of rotation, to be independent of the rate of rotation. 

If a long tube (see fig. 1), filled with a liquid phase M' of density p' containing 
a drop of an immiscible liquid M" of lesser density p", is rotated about its horizontal 
axis, the drop becomes elongated along the axis of rotation. We assume the absence of 
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Fig. 1. Photographs of  a heptane drop (0.156 cm 3 ) 
in glycerol rotating at various speeds. 

gravity so that the axis of the drop will coincide with the axis of rotation of the tube. 
The origin of the coordinate system will be taken at the left end of the drop. Because 
of symmetry, only half of the drop between the origin and the center of the drop 
at the Xo plane need be considered which, fortunately, gives more informative end 
points to the integral to be minimized. The kinetic energy KE minus the potential 
energy PE of the drop will be minimum when the system is in the steady-state condi- 
tion, in accordance with Hamilton's principle. This minimum will result when the 
integral of Kdx from 0 to Xo is stationary subject to the constraint of the drop 
volume being constant, that is, independent of the rate of rotation; thus 

X o X o 

= = + 2troy(1 +y2x)U2 + 7rXy: dx. 

0 o 

(1) 
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Fig. 2. Possible drop shapes,  f(x) = equi l ibr ium curve; 
g(x) = possible non-equ i l ib r ium curve. 

The first term in the second integral is - K E  available, because of  the difference in 
density p = p'  - p" of  the two liquids and w the angular rate of rotation, to do 
work on the drop. The differential term dKE is determined by solving the kinetic 
energy of a rotating circular plate. The second term is the dPE of  the surface of the 
drop described by the curve y = f (x )  (fig. 2) when it is rotated around the x axis; 
Yx is the derivative of y with respect to x. The Lagrangian multiplier X is to be 
adjusted so that the volume of  the drop of density p" and given mass 

X o 

f V = 27r y2dx  = rra 3 

0 

(2) 

is maintained constant, y = f (x )  represents the equilibrium shape which is to be 
determined by minimizing eq. (1). We now assume, following standard thermo- 
dynamics of surfaces, that o is the only surface energy parameter and that it is a 
constant and we determine the consequences of that assumption. 

The condition that G be a minimum is the Euler equation (see any variational 
calculus text [10, 11] ): 

d K _ y  x = 0  (3) 
dx ~Yx 

for the case where K does not contain x explicitly. From eq. (3), we may write 

aK _ pw2y 4 
K - Y x ~ y  x 4 + 2yo(1 + yx~) -1/2 + Xy 2 = constant = 0. (4) 
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The constant is zero, since (4) may be evaluated at the origin where y = 0. Equation (3), 
upon differentiating, becomes 

pw2y 3 + 20(1 + yx2) -1/2 
2oY Yxx 

(1 + y2)3/2 + 2Xy = O. (5) 

Yxx represents the second derivative of y with respect to x. 
Subtract eq. (4) from eq. (5) to eliminate 20(1 + y2x)-l/2 and replace the 

derivatives with the corresponding angular functions (Yx = tan 0) to obtain 

a 2 o d s i n 0  + X = 0. (6) 
a Pw2Y2 dx 

Separate the variables and integrate from 0 to Xo to obtain 

x o 

a4 pro2 J 

0 

y2dx + )kx  0 = - 2 o .  (7) 

Equation (7) with eq. (2) gives 

p~2a3 XXo 
+ = - o .  ( 8 )  

4 2 

Equation (4) may be evaluated at Xo where dy/dx is zero, because of symmetry, so 
that 

p~2y~ 2cs 
-X - + - -  , (9) 

4 Yo 

which with eq. (8) results in 

o _ POJ2 [ Xoy20 ] YO 
4 aa (10) 2 Xo -- Yo 

Equation (10) is an example of an integration to an undetermined, or variable, end 
point Yo and we have to determine the values of Yo in eq. (10) that will determine a 
constant value of o, minimize G, and define the shape of the drop. If, for example, 
the drop were a cylinder capped by hemispheres, the drop would require that 

= 2 4- Yo -3 (11) 
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and this in eq. (10) gives Vonnegut's equation and a variable a. It does show that the 
basic assumptions of Vonnegut's treatment are consistent with those of  this paper, 
but that eq. (11) does not give the value of Yo that minimizes G. We therefore ask 
the variational calculus to define the value of  Yo to be used in eq. (10) so that fi G, 
the variation of G, equals zero for each of the measured values of Xo and co. 

To define Yo and therefore a, consider the variation of G as the upper end 
point of the integral, for a given value of co is allowed to vary; y + 6y = g(x) in fig. 2 
is assumed to represent some varied non-equilibrium curve. We now ask, how does the 
end point of  y + 6y change along some curve F and meet y = f (x)  so as to give a 
condition that will define the minimum value of G? We write (ref. [11], ch. 8, sect. 2) 

X o 

6G = Kodxo + ~K 6y + ~Yx 

0 

d x .  (12) 

The subscript 0 indicates the value of  the function at Xo. Equation (12) can be inte- 
grated by parts, giving 

6G = Kodxo + 

X o 

( a K ) o  f ( S K  d ~ K ~  ~Yx 6yo + 6y ~ d-~y x ] dx.  (13) 
0 

The part of eq. (13) under the integral sign is an expression of  the Euler equation 
and is therefore zero, so that the condition for G to be stationary with respect to a 
variation of the end point along the curve F(xo, Yo) is 

6G =Kodxo + (~-~yKx)ofYO = 0 .  (14) 

Equation (14) can be put in the more useful form (see ref. [11 ],  ch. 8): 

6G = (K +(Fxo-yx)a~yKx)o = O,  (15) 

which is called the transversality condition. Fxo is the slope of F(xo, Yo) at f (xo) ,  
which would require, if aK/~y x were not zero, that Fxo , when 6 G = 0, be zero. How- 
ever, since in this case the partial of K with respect to Yx is zero at Xo, Fxo is not 
restricted and the conditions for a stationary G are simply that the derivative of  a be 
zero and F(xo, Yo) may meet f (x ) ,  the assumed equilibrium shape, at any angle and 
the derivative o feq .  (10) gives 
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xoYo + yao)xodyo 

If  dyo/dxo is finite, then 

y0dxo = 0 .  (16) 

) = 2 + ( 1 7 )  Xo ~ Yo • 

Equation (17) with eq. (10) then gives 

p ~o2 y~ o 
o = ~ ( 1 8 )  

If  dyo/dxo equals zero, 

2a 3 = y~ = x~ (19) 

and only one point is determined and Yxx at Xo must be zero for all values of 
greater than some critical value ~c ,  determined by eq. (19), below which Yxx at Xo 
is not equal to zero and the drop is not distorted, but  is stressed. 

When eqs. (5), (9) and (17) are combined, Yxx is confirmed to be zero for all 
values above the critical value ¢Oc, where eq. (19) holds. When Xo = Yo, a is indeter- 
minate and Xo and Yo have lost any meaning as measurable parameters. 

To get a feeling for the interpretation of  an experiment, we may plot Yo versus 
o in eq. (10) for some measured value of Xo and co (see fig. 3, which is a plot of the 
data of  experiment 5, table 1, and compare points A, B and C). A is the point given by 
Vonnegut's equation. C is the point given by PZM. B is the point resulting from the 
variational analysis. This comparison is valid since Vonnegut 's equation, as has been 
mentioned,  may be derived from eq. (10) and eq. (10) may be derived from PZM's 
[16] approach. Thus, the variational calculus allows an integral to be minimized to 
give a minimal function, eq. (10), which is then given a specific value by finding the 
constant value of  the parameter o through a standard differentiation guided by the 
variational calculus. The three viewpoints can be united, as will now be shown, by the 
introduction of a second parameter into the free energy of the surface. 

If Yxx at Xo for values of co greater than 6o c is not zero, a is slightly smaller 
than the value given by eqs. (17) and (18) and is not  constant as required by the 
initial assumptions. Further, if X is evaluated at y = 0 in eq. (4) and compared with 
eq. (9), it is found that the drop radius r at y = 0, the end of  the drop, is 

r = 2yo /3 ,  (20) 
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Fig. 3. Plot of  eq. (10) at a particular constant x o 
(experiment no. 5). A: from Vonnegut theory; 
B: from variational calculus; C: from PZM theory. 

V = 0.1900 cc, 

Table 1 

System n-hexadecane/glycerol 

a = 0 . 3 5 6 6 3 c m ,  p=0 .485g r / cc ,  T = 2 1 ±  1°C 

co x o Yo  c m  o ergs/cm 2 

exp. rad/sec cm eq. (17) eq. (11) PZM eq. (18) KE 

1 89.95 0.5240 0.30808 0.26328 28.14 28.68 11.885 
2 126.40 0.6715 0.24374 0.22516 27.77 28.05 17.720 
3 170.59 0.8930 0.19947 0.19094 27.97 28.00 23.690 
4 204.94 1.0860 0.17673 0.17144 28.08 28.11 27.807 
5 226.98 1.2165 0.16533 0.16127 27.98 28.23 30.299 
6 256.98 1.4095 0.15204 0.14912 28.13 28.14 33.333 
7 276.88 1.5455 0.14445 0.14207 27.99 28.02 35.195 
8 308.61 1.7650 0.13435 0.13256 28.00 28.00 38.158 
9 344.00 2.0310 0.12459 0.12327 27.71 27.75 40.982 

10 381.07 2.2895 0.11693 0.11591 28.14 28.15 44.639 
11 420.97 2.6000 0.10939 0.10860 28.12 28.13 47.860 
i2 470.09 2.9980 0.10156 0.10100 28.06 28.07 51.696 

Average 28.00 28.10 
-+ 0.13 ± 0.07 

co c = 67.43 rads/sec, KE c = 10.66 ergs, ~ --- 0.106 ergs/rad. 
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a result which is approached for long drops in the usual treatment as, for example, 
that of PZM. However, such a result would mean that by eq. (25), the Laplace equa- 
tion, the pressure across the drop surface on the axis of rotation would have t o  increase 
with the rate of rotation, which is impossible. We have therefore reached a reduction 
to absurdity, eqs. (19) and (20), and one of the assumptions of eq. (1) must be altered. 
The most reasonable change to make is the assumption that the free surface energy 
FS is a function of the area only. 

3. Extension of surface thermodynamics 

To examine the ways the required second mechanical parameter in the free 
surface energy may be introduced, it is sufficient to  consider spherical surfaces and 
define the area A and the volume V thus 

and two equivalent partial differential equations of the free surface energy FS 

($irdA + (TI d r  = APdY = TdA + 2Rdr  

( z ) * d A  + (%$)A d@ = APdY = ydA + 2 @ d @ ,  

The factor 2 in the last terms allows for the two principal radii of curvature. A P  is 
the pressure difference across the surface of tension s of radius r and solid angle @ 
subtending the area A of s. 

Equation (22) results in 

A P r  r =  - 
3 '  

while eq. (23) gives 

the Laplace equation. Therefore, t o  conserve past data, the proper choice of a new 
parameter in situations such as this is one that in the past has been held constant, 
either tacitly or  by design, for partial differential equations must be separable in a 
consistent fashion, both in the laboratory and on paper. Also, the mathematics using 
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is the same as that normally used in the strength of materials. The surface s is the 
neutral surface; it is the surface in the surface region as defined by Gibbs [12], which 
in simple bending has zero stress. The curvature energy may be written [13] 

d E~, = + dA, (26) 

where rl and r2 are the principal radii of  curvature of  s. s is not the same as the 
Gibbsian dividing surface which defines the surface region so that the chemical poten- 
rials are constant of  phase. 

By eq. (26) the curvature energy of  a sphere is 81rq5 and for a cylinder of 
length x and radius r it is, if  ~ is a constant, 

E~ = ~r~x/r. 

Before developing the consequences of  the analysis further, we might try to 
get an intuitive feeling for the problem by asking what the flexural rigidity contributes 
to the physical properties of  a drop. Because it is a partial differential equation, 
eq. (23) defines cb and 3' as the ultimate strengths of  the surface. The spring of the 
surface in bending would be expected to show up in the same way it does in a ping- 
pong ball, so that small drops of water should bounce off a plane water surface the 
same way ping-pong balls bounce from a table. The phenomenon is easily observed 
if a fine spray from a hose falla in a gentle arc on the hood of a car; the effect is 
very beautiful, as anyone who has washed a car in bright sunshine can attest. In the 
maximum bubble pressure (MBP) method for measuring 7, the experiment is done 
at constant ~; we should expect to find that MBP would give different results if the 
test were made at variable ~b by using a non-wetted capillary, and this has indeed 
been reported in ref. [14]. Finally, it has been shown that small drops of liquid water 
can exist to temperatures as low as forty degrees below zero [15], a phenomenon 
called cold fog that must be reconciled with the triple point. 

To introduce • into the analysis rigorously would require adding the term 

CI~ I~ll ~212 )112 + y(1 + yx 2 (28) 

to eq. (1). Since the radii of  curvature involve Yxx, the Euler equation will be 

OK daK d2OK 
+ = 0, (29) 

Oy dx ~Yx dx2 ~Yxx 

the solution of  which, it is hoped, will be the subject of  a future paper. 
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At the critical rate of rotation, we may assume that o A  = XV, and since X 
is given by eq. (9), it may be combined with eq. (19) because no kinetic energy has 
been used to increase the area, and we have 

w 2 - 2a21/~3 ( 3 -  22/3). (30) 
c pa 3 

The kinetic energy in a rotating sphere is 

KE = ~-~/rpco2a s , (31) 

which with co c from eq. (30) will give the critical energy of rotation. 
If  the shape of  the drop is assumed to be that of a cylinder capped by hemi- 

spheres (see fig. 1), Yo will be given by eq. (11)and for changes of the drop after the 
critical rate of rotation has been exceeded, we may write 

KE - K E -  4zr3,a 2 + 4zrTXo Yo - 2n¢ (Xo - Yo) = 0. (32) 
c Y o  

The difference in sign of  the last two terms is required by consideration of the sign 
of  A P d V  for an experiment at constant ¢ versus the sign of A P d V  for an experi- 
ment  at constant A [see eqs. (21) and (22)]. This also shows why r at y = 0 can 
change with co. 

The kinetic energy for the assumed shape is: 

7r p w 2 y  4 
KE = ~ zrpco2y~ + 2 (Xo-Yo) .  (33) 

Because the surface energy of  a sphere may be written 

E s = ( 3 , +  2-~)47ra2,  (34) 

it will be assumed that the critical energy is used to remove the effect of  one principal 
radii of  curvature, and that therefore we may write 

0 = 7 + ¢b/a 2 .  (35) 

Equations (32) and (35) may now be solved simultaneously. 
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Table 2 

Total energy of spherical surfaces n-hexadecane/glycerol 

"r + 2't'/a 2 ergs/cm 2 Radius cm 

27.27 *~ 
28.94 0.35663 
29.63 0.3 
30.66 0.25 
32.6 0.2 
48.5 0.1 

112.1 0.05 

Table 3 

Comparison of interfacial tension measurements by different methods 
T = 2 1 ± I ° C  

a ergs/cm a 

System Rotating Pendant Ring 
drop drop tensiometer 

Air/glycerol 66.1 64.6 63.4 
Heptane/glycerol 28.4 27.8 27.7 
n-hexadecane/glycerol 28.0 27.2 27.3 

Table 4 

3, as a function of KE c 

3' ergs/cm 2 

exp. KE c 

11.5 11.0 10.66 9.5 8.0 5.0 0.0 

1 24.11 24.95 25.33 26.57 28.19 31,42 36.82 
2 26.91 27.12 27.35 27.97 28.76 30.35 33.01 
3 27.21 27.35 27.45 27.78 28.21 29.07 30.48 
4 27.20 27.30 27.36 27.60 27.90 28.49 29.49 
5 27.19 27.27 27.33 27.52 27.76 28.25 29.36 
6 27.14 27.21 27.25 27.40 27.59 27.98 28.79 
7 27.11 27.17 27.21 27.34 27.50 27.83 28.38 
8 27.11 27.16 27.19 27.29 27.43 27.69 28.14 
9 27.09 27.13 27.15 27.24 27.34 27.56 27.92 

10 27.12 27.19 27.21 27.28 27.37 27.55 27.85 
11 27.15 27.22 27.23 27.29 27.36 27.51 27.76 
12 27.23 27.25 27.27 27.31 27.37 27.37 27.69 

Average 27.14 27.22 27.27 27.41 27.69 28.15 28.99 
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4. Experimental 

The theoretical considerations of this paper are confirmed experimentally by 
the published results of  PZM on the system n-hexadecane/glycerol. The results of  
the measurements are shown in table 1. It will be noticed that the standard deviation 
of  o by the PZM analysis is approximately twice that from eq. (18). The standard 
deviations were calculated omitting experiments one and nine, which PZM reported 
as being most suspect. The smaller deviation for the variational development suggests 
that it may be theoretically more correct. Further, it will be noted that o given by 
the variational method is the maximum value of the partial derivative of  a with respect 
to Y0 (see fig. 3), a result that makes it, intuitively, more pleasing than any other 
value. 

To test the assumptions of  eqs. (33) and (34), the results of  table 4 were 
calculated using different values of KE c. It can be seen that the value of 10.66 ergs 
gives a constant value of  3' in experiments two through twelve, with an average value 
that agrees very well with the value of 7 by both the pendant drop and the ring tensio- 
meter methods, as shown in table 3 which is PZM's table 4. Measurements by the 
pendant drop and ring tensiometer methods give 7, since these methods, being cali- 
brated against the capillary rise methed, are measurements at constant ~, and should 
be smaller than a, as shown in table 3 for other systems. 

Because 3' and a are constants, experimentally, for Yo equal to 0.1 cm, table 2 
has been given to show how the total surface energy per square centimeter varies 
with a, the radius of the spherical drop. If the drop were smaller, it might be antici- 
pated that the tension value would be insignificant by comparison with the free energy 
associated with • because the energy per cc of a spherical drop due to the surface 
energy would be 

3__7_7 + 6.__~ 
a a 3 ' 

an amount of energy sufficient to make the existence of cold fog understandable. 

5. Conc lus ions  

Because surface science is so all prevading and any entity that can be isolated 
must have a surface, the results given in this paper need to be amplified. It has been 
shown [15] that in unsaturated solutions, • and 7 are functions of the radius of 
curvature and that the classical adsorption equation is a special case of  the more 
general adsorption equation and holds only for plane surfaces, which are very rare. It 
must also be remembered that the position of the surface of  tension is a function of  
the radius and will move outward through the surface region as the radius decreases; 
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therefore, the volume cannot always be assumed to be constant. However, this effect 
should not become important until the radius of the drop approaches the thickness 
of  the interfacial region. 

The difference between the variational development and the treatment by 
means of an elliptical integration, for example, is that the variational analysis allows 
an exact solution by way of  natural boundary conditions. An elliptical expansion may 
be thought of  as equivalent to the introduction of an unlimited number of additional 
parameters and of  discarding the requirements of Occam's razor. There will, however, 
be times when a judicious combination of  the mathematical methods will be desirable. 
Such a time might be in the study of the effect of  small disturbances, such as those 
that cause the drop surface to exhibit a wave shape. In this case, a variational treat- 
ment combined with a wave solution might give valuable understanding of the ways 
that a drop absorbs and gives up energy, so that is can act as a model for quantum 
systems. 

It has been shown by a variational calculus analysis that it is impossible to 
represent the excess free energy in a surface by a single constant parameter, the 
surface tension, because the concept of  a single variable cannot be reconciled with the 
laws of  motion. It has also been shown, using published data, that the extra para- 
meter demanded contributes a very significant amount to the surface energy when 
the curvature is in the range of  the important industrial and biological surfaces such 
as, for example, emulsions, pigments, fibers, living cells and lung alveoli. 

It is believed that the variational calculus offers a valuable tool for the 
examination of  other scientific models in which some functional must be minimized, 
as in the surface chemistry example. 
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